Jak obliczyć pierwiastek z liczby ujemnej?
Z tej krótkiej lekcji nauczysz się, jak obliczyć dowolny pierwiastek z liczby ujemnej, np. \(\sqrt{-4}=?\) Metoda jest bardzo prosta i nie wymaga znajomości skomplikowanych wzorów!
Podstawy - jednostka urojona i pierwiastek zespolony
Na początek przypomnijmy sobie, że jednostka urojona (którą oznaczamy literką \(i\)) to po prostu liczba, która po podniesieniu do kwadratu jest równa -1.
Oczywiście jednostka urojona i nie jest jedyną liczbą, która po podniesieniu do kwadratu daje -1. Drugą liczbą jest -i.
Formalnie rzecz biorąc, pierwiastek zespolony to zbiór liczb, np. pierwiastek drugiego stopnia z liczby -1 to zbiór złożony z dwóch liczb (po rejestracji uzyskasz dostęp do lekcji wido z wyjaśnieniem wszystkich metod obliczania pierwiastków zespolonych):
\[\sqrt{-1}=\{i,-i\}\]
W tym artykule pokażę Ci jak obliczyć pierwiastki zespolone z liczb ujemnych bez stosowania skomplikowanych wzorów opartych na postaci trygonomerycznej lub wykładniczej liczby zespolonej.
Przykłady pokazujące jak obliczyć pierwiastek zespolony z liczby ujemnej
Podobno człowiek najlepiej uczy się na przykładach, więc bez owijania w bawełnę przechodzimy do konkretnych przykładów pokazujących jak obliczać pierwiastki zespolone z liczb ujemnych. Zacznijmy od pierwiastka z liczby -4, oto obliczenia:
\[{\sqrt{-4}=\sqrt{4\cdot(-1)}=\sqrt{4}\cdot\sqrt{-1}=2\cdot\sqrt{-1}={\color{red}{2i}}}\,\,lub\,\,\color{red}{-2i}\]
Jeśli chcesz sprawdzić, czy dobrze obliczyłeś/aś pierwiastki zespolone, to koniecznie zobacz ten kalkulator.
Zobacz lekcję video w której tłumaczę jak krok po kroku wykonać powyższe przjścia (w filmiku jest też wyjaśnienie czym jest jednostka urojona, jeśli chcesz przejść bezpośrednio do przykładu to przewiń lekcję do 2 minuty i 40 sekundy)
Inne przykłady
Oto inne przykłady, które pomogą Ci zrozumieć schemat wyznaczania pierwiastków z liczb ujemnych:
\[{\sqrt{-9}=\sqrt{9\cdot(-1)}=\sqrt{9}\cdot\sqrt{-1}=3\cdot\sqrt{-1}={\color{red}{3i}}}\,\,lub\,\, \color{red}{-3i}\\{\sqrt{-2}=\sqrt{2\cdot(-1)}=\sqrt{2}\cdot\sqrt{-1}={\color{red}{\sqrt{2}i}}}\,\,lub\,\,\color{red}{-\sqrt{2}i}\\{\sqrt{-\sqrt{3}}=\sqrt{\sqrt{3}\cdot(-1)}=\sqrt{\sqrt{3}}\cdot\sqrt{-1}=3^{\frac{1}{4}}\cdot i={\color{red}{\sqrt[4]{3}i}}}\,\, lub\,\,\color{red}{-\sqrt[4]{3}i}\]
Jeśli chcesz poznać inne typowe schematy, triki i metody rozwiązywania zadań z liczb zespolonych, to zapraszam do rejestracji, dzięki której uzyskasz dostęp do kilkudziesięciu kursów wideo, przykładów oraz zadań z rozwiązaniami.
Komentarzy (7)